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a  b  s  t  r  a  c  t

Numerical  calculations  of  the  mobile  zone  mass  transfer  rate in a variety  of  ordered  2D  and  3D  structures
are  presented.  These  calculations  are in  line  with  earlier  theoretical  and  experimental  findings  made in
the field  of  chemical  engineering  and  suggest  that  the  Sherwood-number  (Shm)  appearing  in  the  mobile
phase  mass  transfer  term  of  the  general  plate  height  expression  of  liquid  chromatography  is not  correctly
predicted  by  the  Wilson–Geankoplis  –  or the  Kataoka  –  or the  penetration  model  expression  that  have
been  used  up  to now  to  in  the  field  of  LC,  and  that  at least  more  research  is needed  before  these  expres-
sions  can  be  continued  to  be  used  with  confidence.  The  aforementioned  expressions  were  obtained  by
neglecting  the  effect  of  axial  dispersion  on  the  mass  transfer  process,  and  it seems  that  they  therefore
omputational fluid dynamics
acked bed
onolith

SM

underestimate  the  true Shm-number  by  a  factor  of  2–5  around  the  minimum  of the  van  Deemter-curve.
New  correlations  describing  the  variation  of  the  Shm-coefficient  as  a  function  of  the  reduced  velocity  for
a number  of  other  packing  geometries  (tetrahedral  monolith,  2D  pillar  array)  are  proposed.  These  corre-
lations  are  in  agreement  with  earlier  theoretical  and  experimental  studies  showing  that  at  low  velocities
the  local-driving  force-based  Shm-value  is  of  the  order  of 10–20  in  a  packed  bed  column  with  an  external
porosity  on  the  order  of  35–40%.

© 2012 Elsevier B.V. All rights reserved.
. Introduction

The general plate height model, originally introduced by Lapidus
nd Amundson [1] and later used by van Deemter et al. and
ther researchers for the specific application of liquid chromatog-
aphy [2–7], is generally accepted as the standard model for the
and broadening in packed and monolithic chromatography media.
any variants of the general plate height model exist (resulting

rom the use of different notations and parameter definitions), but
hey can all be reduced to an expression of the following form [8]:

 = hinhom+ 2�eff(1 + k′′)
vi

+ 2
k′′2

(1 + k′′)2

vi

˛

1
Shm

ε

1 − ε
+2

k′′

(1 + k′′)2

vi

˛

1
Shpart

Dmol

Dpart
(1)

herein �i is the reduced interstitial velocity (defined as
i = uid/Dmol), hinhom represents the band broadening contributions
rising from the heterogeneity of the bed, �eff is the effective longi-
udinal diffusion (�eff = Deff/Dmol), and Shm and Shpart, respectively,

re the dimensionless mobile zone and particle zone mass transfer
oefficient (Sh = Sherwood-number). In addition,  ̨ is a shape fac-
or (  ̨ = 6 for spherical particles and 4 for infinitely long cylinders)
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and k′′ is the zone retention factor (related to the t0-based reten-
tion factor k′ via k′′ = (1 + k′)εT/ε − 1, wherein εT and ε, respectively,
are the total and the external bed porosity). Similarly, the inter-
stitial reduced velocity (�i) is related to the more easily accessible
t0-based reduced velocity (�0) via �i = �0(εT/ε).

Although physically and mathematically sound, the general
plate height model is based on a number of approximations and
assumptions such as the fact that the velocity profile in the inter-
stitial through-pores is flat (plug flow) and the fact that the different
contributing band broadening sources are independent of each
other. The validity of these assumptions is difficult to check exper-
imentally, because Eq. (1) contains a number of parameters (Shm,
�eff and Dpart) whose value is ill-known under experimental con-
ditions [9,10].  In addition, some of the terms in Eq. (1) contain
velocity-dependent parameters (hinhom and Shm) that need to
be estimated using empirical or semi-empirical correlations. The
hinhom-term for example is typically modeled via one or more so-
called Giddings-coupling terms [6,11,12]. However, the parameters
needed in these Giddings-couplings terms are a priori unknown
and need to be determined by curve fitting Eq. (1) to a set of exper-

imental data.

In an attempt to reduce the uncertainty on the different terms
appearing in Eq. (1),  the present study focuses on the mobile
zone mass transfer term (3rd term on right hand side). This term

dx.doi.org/10.1016/j.chroma.2012.01.007
http://www.sciencedirect.com/science/journal/00219673
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ontains a parameter, Shm, which is nothing else but the dimen-
ionless version of the mobile zone mass transfer coefficient (km),
enerally defined as:

hm = kmd

Dmol
(2)
herein d is the characteristic size of the packing or the tube.

Nomenclature

a specific contact area [m−1]
A Giddings coupling-term parameter (see Eq. (14))
B dimensionless B-term
C concentration [kg/m3]
Cin inlet concentration [kg/m3]
Cm mobile zone concentration [kg/m3]
Cout outlet concentration [kg/m3]
Cs static zone concentration [kg/m3]
d characteristic size of the packing or tube [m]
D Giddings coupling-term parameter (see Eq. (14))
Dax axial dispersion coefficient [m2/s]
Dmol molecular diffusion coefficient in the mobile zone

[m2/s]
Dpart molecular diffusion coefficient in the static zone

[m2/s]
dtube tube diameter [m]
h reduced plate height
hax axial dispersion contribution to the reduced plate

height
hCm contribution of mobile zone mass transfer to the

dimensionless plate height
heddy contribution of eddy dispersion to the dimension-

less plate height
k′′ zone retention coefficient
km mobile zone mass transfer coefficient [m/s]
km,ln apparent mass transfer coefficient [m/s]
Kp particle based equilibrium constant
L length between inlet and outlet [m]
Re Reynolds number (=u0 d/�)
S total contact area [m2]
Sc Schmidt number (=�/Dmol)
Shm dimensionless mobile zone mass transfer coefficient

or Sherwood number (see Eq. (2))
Shpart dimensionless static zone mass transfer coefficient

or Sherwood number (see Eq. (2))
t0 retention time of an unretained component [s]
ui interstitial velocity [m/s]
V volume [m3]
x distance in the flow direction [m]

Greek symbols
˛  shape factor (=6 for spherical particles, =4 for

infinitely long cylinders)
ε external porosity
εT total porosity
� mass flux to the surface [kg/(m2 s)]
�c shape factor
�d shape factor
� kinematic viscosity [m2/s]
�0 reduced chromatographic velocity
�i reduced interstitial velocity
ogr. A 1227 (2012) 194– 202 195

Shm generally varies with the mobile phase velocity. In
the field of LC, this dependency is often represented via the
Wilson–Geankoplis equation [6,13–15]:

Shm = 1.09
ε2/3

�1/3
i (3)

In some cases [8,10,16,17], other correlations, such as the Kataoka
or the penetration model are being used. All of them are, however,
of the same form, which can be written as:

Shm = Yc�n
i with 1/3 < n < 1/2 (4)

In previous publications [8,18,19], our group has criticized such
mobile zone mass transfer expressions. Indeed, as it implies that
Shm tends to zero when the velocity tends to zero, the form of
these expressions suggests that the mass transfer would stop when
the velocity stops. This seems to be physically invalid and it was
therefore proposed in [8] to add a constant term to Eq. (4):

Shm = �d + �cvn
i (5)

Using Eq. (5),  it was  possible to prove the general plate height model
described by Eq. (1) to be accurate to within a few percent. Using
only one set of geometrical shape factors (the �c and �d-parameters
appearing in Eq. (5))  completed with two Giddings-parameters to
represent the velocity dependency of hinhom (see Eq. (14) further
on), it was  possible to closely fit Eq. (1) to a set of highly accurate
plate height data over a broad range of velocities, retention fac-
tors, and values of the intra-particle diffusion coefficient [18,19].
Because the data were generated via numerical simulation, the
actual value of the diffusion constants in the interstitial and the
stationary zone was exactly known. In a real-world experiment,
these diffusion constants are only known approximately and the
uncertainty on their value inevitably masks any fitting or modeling
errors. In a numerical test, this uncertainty is not present, mak-
ing the fitting test much more stringent than in a real experiment.
The good agreement between model and simulated data obtained
in [18,19] showed that the general plate height model works very
well when used with an expression for km of the form given by Eq.
(5), despite the apparently crude underlying approximations (e.g.,
plug flow in the interstitial pores).

In the present study, it is attempted to validate Eq. (5) in an inde-
pendent way, by directly measuring Shm via the local mass transfer
flux instead of estimating its value indirectly as was done in [18,19].
Whereas very difficult to realize in practice, the local mass trans-
fer rate can relatively easily be determined when doing computer
simulations, as in this case the concentration field is exactly known
at any location of the bed. Similar to the work in [19], the data are
again generated on a series of perfectly ordered 2D and 3D media, as
these can be calculated within a reasonable time frame (due to the
many symmetries and periodic planes that can be used, the actual
flow domain that needs to be calculated can be strongly reduced).
An additional advantage of ordered structures is that they should
lead to Shm-values that are periodically constant, hence offering
an additional means to check the accuracy of the calculations. The
procedure to determine the Shm-values was first validated on a sim-
plified case (mass transfer to the inner wall of a cylindrical tube),
as in this case the value for Shm is exactly known analytically [20].

2. Background theory and literature on mobile zone mass
transfer

Before starting the actual study, it should first be considered
that the literature concerning the local mass transfer coefficient in

packed bed columns is often contradictive and confusing. As clearly
demonstrated by Fedkiw and Newman [21,22] and by Wakao et al.
[23], this is largely due to the co-existence of two  different defini-
tions for the mass transfer coefficient.
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The first mass transfer coefficient, further denoted by km,
irectly represents the local mass transfer conditions and is the
oefficient that appears in the uni-dimensional mass balance of a
issolved species subjected to axial convection and dispersion, as
ell as to a transversal mass transfer process to a solid zone or

nterphase kept at C = 0:

ui
dc

dx
+ Dax

d2c

dx2
= akmC (6)

n Eq. (6),  a is the specific contact area (solid surface over liquid
olume) between the fluid and the solid. Eq. (6) is also of the same
ype as the mass balance leading to the general plate height model
iven by Eq. (1).  The only difference between Eq. (6) and the mobile
one mass balance leading to Eq. (1) is that the right hand side of
he expression should be changed from kmaC to kma(Cm − Cs/Kp) to
xpress that the mass transfer between the mobile and stationary
one in chromatography is reversible and tends to an equilibrium
tate where Cs = KpCm.

The second mass transfer coefficient, very popular in the typi-
al chemical engineering literature, and further denoted by km,ln,
inks the observed concentrations at the inlet and outlet of the bed
resp. Cin and Cout) during a mass transfer experiment such as, for
xample, the measurement of the uptake of benzoic acid in a water
tream from pure benzoic acid particles as was the case in the clas-
ic experiment of Wilson and Geankoplis [13]. The interpretation of
his second type of mass transfer coefficient is based on the assump-
ion that the axial dispersion term in Eq. (6) can be neglected, so
hat:

m,ln = ui

aL
ln

(
Cin

Cout

)
(7)

hereas the km-coefficient needed in Eq. (6) requires the mea-
urement of the local mass transfer fluxes and concentrations, the
m,ln-coefficient needed in Eq. (7) is readily accessible via a simple
xternal measurement of Cin and Cout. This explains why most of
he experimental literature studies, including that of Wilson and
eankoplis, report km,ln and not km.

When the second term (axial dispersion term) on the left hand
ide of Eq. (6) can be neglected, Eq. (7) is the solution to Eq.
6) and the difference between km and km,ln vanishes. However,
hen the axial dispersion term becomes important (which is the

ase when the velocity drops below a certain limit, as it does
n liquid chromatography), the two values start to strongly devi-
te. When the reduced velocity tends to zero, the two  different
efinitions even tend to a different limit. Whereas km,ln tends to
ero when �i → 0, the km-coefficient tends to a finite value, and is
hus significantly larger than km,ln [21,22,24].  According to Fedkiw
nd Newman [21,22],  the deviation between the two  expressions
lready becomes significant when �i < 50. The effect is hence impor-
ant over the whole range of relevant reduced chromatographic
elocities.

In the famous Wilson and Geankoplis [13] paper, the authors
sed liquids with a Schmidt-number of 50,000–70,000, i.e., 50–70
imes higher than in normal liquids. The lowest Reynolds point in
ig. 3 of their paper, which is a point that in fact already starts to
et off the experimental correlation line, corresponds to a reduced
hromatographic velocity of 75 (�0 = Re Sc = 0.0015 × 50,000 = 75).
he authors also used water as mobile phase in their experiments
nd in that case the lowest Reynolds point corresponds to a reduced
hromatographic velocity of 40 (�0 = Re Sc = 0.04 × 1000 = 40). In
oth cases, the lowest �0-value they considered lies around the
0 > 50 criterion of Fedkiw and Newman [21,22] above which the

xial dispersion is indeed negligible. Hence, considering that most
hromatographic separations occur in the �0 = 5–20 range, one
hould realize that the Wilson and Geankoplis correlation is only
alid well outside this range.
ogr. A 1227 (2012) 194– 202

Furthermore considering that Eq. (1) is based on the same type
of mass balance as Eq. (6),  it should be clear that the mass transfer
coefficient needed in the general plate height model should be the
km-variant, i.e., that based on the local flux and the local driving
force (cf. Eq. (6)) and not the km,ln-variant. Unfortunately, this is the
type of mass transfer coefficient used in the two  most frequently
employed Sherwood correlations in the field of chromatography:
the Wilson and Geankoplis- and the Kataoka-correlation [10,25].

Whereas the latter correlations tend to zero in the �i → 0-limit,
experimental literature data collected and interpreted under the
correct definition (i.e., by taking the effect of axial dispersion into
account) consistently show that the km- and Shm-values can be
expected to be finite (of the order of 10–20) in the �i → 0-limit.
Miyauchi et al. [26] found, using electrical current density mea-
surements, a value around Shm = 15 in the �i → 0-limit for a sphere
packing with an external porosity around ε = 0.47. Gunn and Souza
[27] found a value around Shm = 10 in the �i → 0-limit for the gas
phase mass transfer in a more densely packed bed. Both values fur-
thermore agree well with the theoretical value of around 12 that
was  predicted theoretically by Pfeffer and Happel [28], using a free-
surface model to calculate the local mass transfer rate to a sphere
in a randomly packed bed.

Another, often ignored, shortcoming of the Wilson and
Geankoplis-correlation is that it was  obtained under so-called
diluted bed conditions. This means that only a fraction of the
spheres suspended in the bed were active in the Wilson–Geankoplis
study [13]. In this way, the influence of the neighboring particles on
the driving force for mass transfer is underestimated [29]. There-
fore, Sh-values obtained in diluted beds cannot be used in undiluted
beds, like chromatographic columns [29].

3. Numerical methods and considered geometries

To cover the broadest possible range of existing chromato-
graphic bed geometries, the mass transfer rate has been calculated
for 4 different general geometrical classes: a cylindrical tube (as
employed in open-tubular liquid chromatography [30,31] and used
here for validation purposes as this is a case for which the analyt-
ical solution is known [20]); a 2D equilateral triangular array of
cylindrical pillars (see Fig. 1a) to represent the pillar array columns
developed by our group and others [32–34];  a 3D ordered mono-
lithic skeleton structure (tetrahedral skeleton model [34–37],  see
Fig. 1b) as a first principle approximation to the typical packing
structures encountered in monolithic columns; finally an ordered
array of spheres (face centered cubic (fcc) packed, see Fig. 1c for
a 3D representation of the structure) to represent the case of an
(ordered) packed bed column. For the monolith geometry, two dif-
ferent external porosities were considered: one corresponding to a
typical packed bed value (for which external porosity ε = 0.38), and
a larger one to investigate the impact of the external porosity of
the packing (ε = 0.60). For the ordered array of spheres, four geome-
tries with different porosities ranging from ε = 0.35 to ε = 0.44 were
considered. Besides these cases, one substantially higher porosity
(ε = 0.80) was  considered as well.

The cylindrical tube was drawn as a rectangle on which an
axisymmetry boundary condition was installed on one long edge
and a wall boundary condition on the other. Pressure inlet and
outlet boundary conditions were applied on the boundaries in the
flow direction (short edges). The other structures display symme-
try and/or periodicity in the x-, y- and z-direction. Therefore it is
possible to draw a unit cell for each considered structure. This

unit cell can reconstitute the original structure by proper reflec-
tion and/or translation. Symmetry or periodic boundary conditions
were applied to the boundaries in the y- and z-direction (perpen-
dicular to the flow direction). Although the structures also display
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ig. 1. Unit cell (not the smallest possible) of (a) an equilateral triangular array of
ylindrical pillars (ε = 0.40), (b) the Tetrahedral Skeleton Model monolith (ε = 0.38)
nd (c) an array of face centered cubic ordered spheres (ε = 0.38).

 periodicity in the x-direction (flow direction), the expected con-
entration field does not. Therefore, the unit cells were mirrored or
ranslated several times in the x-direction. Pressure inlet and outlet
oundary conditions were installed on the boundaries in the flow
irection.

The cylindrical tube was meshed using 175,000 triangular cells.
his mesh was deliberately meshed with triangular cells to facili-
ate comparison with the equilateral triangular array of cylinders

which was also meshed using triangular cells). A sizing function
growth rate = 1.15) was attached to the cylinder wall. The max-
mum cell skew never exceeded 0.37. The face centered cubic
phere packing was meshed using on the order of 2,000,000

ig. 2. Calculated species concentration fields in the axisymmetrical plane of (a) a cylindr
tetrahedral skeleton model, see Fig. 1b for a 3D representation of the structure) with ex
or  a 3D representation of the structure).
ogr. A 1227 (2012) 194– 202 197

tetrahedral cells. A boundary layer mesh was attached to the mono-
lith wall. This layer consisted of triangular prism (or wedge shaped)
cells arranged in 5 layers, with a layer thickness growth rate of
1.2. A sizing function was attached to the particle walls (growth
rate = 1.15). The maximum cell skew never exceeded 0.88 and the
average cell skew ranged from 0.17 to 0.20. The TSM monolith was
meshed using 1,400,000–2,800,000 tetrahedral cells (depending
on the external porosity resulted in slightly different cell num-
bers). A sizing function was  attached to the monolith walls (growth
rate = 1.25). The maximum cell skewness never exceeded 0.90 and
the average cell skew ranged from 0.27 to 0.28. The equilateral tri-
angular array of cylinders was meshed using 240,000 triangular
cells. A sizing function was  attached to the cylinder walls (growth
rate = 1.15). The maximum cell skew was  0.40.

Flow and convection-diffusion equations were solved using a
second order upwind discretization scheme, applying a species sink
condition (constant zero concentration) at the interior wall sur-
faces, and using constant (non-zero) concentration at the pressure
inlet. Since Eq. (6) is a steady-state equation, the problem could be
solved in the steady-state mode.

Once the steady-state concentration profiles were calculated,
the reporting function of the software was  used to calculate the
surface-averaged species flux at the chromatographic surfaces
(nominator of Eq. (8))  and the volume-averaged species concen-
tration (denominator of Eq. (8)):

km = (1/S)
∫

� dS

(1/V)
∫

C dV
(8)

wherein � is the total mass flux to the surface in the considered
control volume and wherein V and S resp. are the liquid volume
and total contact area in the same control volume.

Grid checks were performed until the change with the previous
solution for Shm was less than 0.5%. This criterion was checked for
the three different geometries for one porosity value and several �i-
values. Sizing functions were used to ensure smaller grid cells near
the stationary phase boundaries, because the highest velocity- and
concentration-gradients occur in these regions.

4. Results and discussion

4.1. Concentration profiles and accuracy of the numerical results

Fig. 2 shows the calculated steady-state species concentration
profiles in the four considered different geometries. At the inlet, the

species are introduced at a concentration C = 1 (colour code = red).
Since the solid zone boundaries are kept at C = 0 (and hence “con-
sume” the species), it is straightforward to observe that the regions
close to the solid walls are coloured blue (very low concentration)

ical tube, (b) a 2D array of cylindrical pillars, (c) a 3D monolithic skeleton structure
ternal porosity ε = 0.38, and (d) an ordered array of spheres (fcc packed, see Fig. 1c
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Fig. 4. Variation of the computed Shm-values as a function of the dimensionless
velocity �i for the case of a 3D array of spheres with external porosity (a) ε = 0.35
(♦),  ε = 0.38 (©), ε = 0.41 (�), ε = 0.44 (�) and (b) ε = 0.80. The solid line corre-
sponds to Eq. (10), the long dashed line to Eq. (11). The dashed line represents the
Wilson–Geankoplis correlation (Eq. (3)).
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Fig. 5. Variation of Shm as a function of the dimensionless velocity �i for the case
ig. 3. Variation of Shm as a function of the dimensionless velocity �i for the case of
 cylindrical tube (�). The dashed horizontal line represents Eq. (9).  The open circle
ata points represent the analytical solution of Papoutsakis et al. [20].

nd that the colour changes from red (inlet) to blue (outlet) as the
oncentration gradually decreases along the longitudinal axis as
he species disappears at the solid boundaries.

Because the studied flow domains can be considered as a series
onnection of identical unit cells (see black boxes added to Fig. 2),
nd since the average Shm-value should be the same in every unit
ell, the possibility to investigate whether the value of Shm varies
emains the same in each unit cell provides an important internal
ccuracy check. This was deemed important, especially for the case
f low reduced velocities, because in this case the concentration
ery rapidly drops (more than 5 orders of magnitude per unit cell),
otentially leading to numerical errors on the determination of the
verage flux and concentration in the most downstream unit cells.
nother problem that needed to be considered is the existence of
n entrance region, where the velocity and concentration gradients
re developed into the profiles they display in the rest of the bed.
nevitably, the mass transfer in this region is different from that
n the rest of the bed. According to the theory of heat and mass
ransfer, the mass transfer coefficients are larger in this entrance
egion [38].

This was also observed in our simulations, as the Shm-values in
he first unit cell were consistently larger than in the following unit
ells. For the high �i-case in the cylindrical tube, the entrance region
ven persists over the first 3 unit cells. The last cells of the consid-
red flow domains also lead to a deviating value, mainly because the
oncentration in these cells becomes so small that the uncertainty
n the determination of the average wall flux and concentration
ecomes too large. The results of these cells were therefore not
aken into account. Also the value in the entrance region was  not
onsidered. The Shm-values reported in the present study were cal-
ulated in the region between the entrance and exit region, where
he Shm-value never varied by more than 0.5% over at least three
onsecutive unit cells. When such a region could not be detected,
.e., when the velocity was either too large or too small, the simu-
ations were stopped. This is also the reason why different velocity
anges are being covered in Figs. 3–6.

Fig. 3 shows how Shm varies with the reduced velocity in the
ylindrical tube case. The literature value that is usually cited for
hm in cylindrical pipe with uniform cross-section is independent
f the reduced velocity and is given by:

hm = kmdtube

Dmol
= 3.66 (9)
As can be noted from Fig. 3, the data computed via the employed
umerical methods correspond exactly to this value in the large
i-range (cf. the agreement with the dashed horizontal line). For

of a monolithic column mimic (TSM) with external porosity (a) ε = 0.38 and (b)
ε  = 0.60. The solid line corresponds to Eq. (12). The dashed line represents the
Wilson–Geankoplis correlation (Eq. (3)).
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(13).  The dashed line represents the Wilson–Geankoplis correlation (Eq. (3)).
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maller �i-values, the computed data points deviate from this value
nd increase with decreasing �i. The computed data, however, still
re in full agreement with the analytical solution to the extended
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radually increases with �i when �i decreases.
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4.2. Variation of Shm as a function of the reduced velocity for the
various packed bed structures

Fig. 4a and b shows the volume-average concentration-based
Shm-values in the five considered sphere arrays. As can be noted,
Shm increases with �i for �i larger than 10, whereas Shm reaches a
constant value when �i becomes smaller than this value and tends
to zero. In other words, the computed Shm-data do not vary with �i
according to a correlation of the form of Eq. (4) but rather follow a
correlation of the form represented by Eq. (5):

Shm = 9.9 + 2.1v0.37
i (0.35 < ε < 0.44) 1 < vi < 250 (10a)

Shm = 7.8 + 0.090v0.69
i (ε = 0.80) 0.06 < vi < 60 (10b)

In the low porosity cases (0.35 < ε < 0.44, see Fig. 4a), the agreement
between Eq. (10a) and the computed data (open symbols) is not
perfect (cf. the solid line). A better fitting of the data can be obtained
using the following expression (cf. the long dashed line):

Shm = 13
1 + 2.1vi

+ 8.6v0.21
i (0.35 < ε < 0.44) 1 < vi < 250 (11)

The particularity of Eq. (11) is that it allows to represent the slight
increase of Shm with decreasing �i between �i = 1 and �i = 10, a phe-
nomenon that is similar to that already observed in the cylindrical
tube case represented in Fig. 3.

The Wilson–Geankoplis expression (represented by the dashed
line) on the other hand clearly fails to represent the computed
data. As discussed in Section 2, this is due to the fact that the
Wilson–Geankoplis expression is based on the km,ln-coefficient,
which is only correct and relevant when used in combination
with an expression of the form of Eq. (7) and not when used
in combination with a mass-balance of the type of Eq. (6),  as is
needed to derive general plate height expression of chromatog-
raphy. The largest discrepancy between the computed Shm-data
and the Wilson–Geankoplis expression is situated in the range of
�i < 10, where the former remains constant around a given (high)
value, while the other tends to zero. This is most pronounced in the
ε = 0.8-case (and also in the other geometries considered further
on). This major difference can, according to the theoretical work
of Fedkiw and Newman [21,22], be fully attributed to the different
influence of the axial dispersion on the Sherwood numbers that are
based on km (such as the computed data in this study) and those
based on km,ln (as is the case for the Wilson–Geankoplis expression).

In the low ε-case (Fig. 4a), the computed Shm-value in the �i → 0-
limit approximately equals Shm = 12.7, which lies very close to the
theoretical value of Shm = 12 predicted by Pfeffer and Happel for a
sphere packing with ε = 0.40, using a free surface model which they
could solve analytically [28]. This agreement reconfirms the excel-
lent accuracy of the present numerical modeling work. The value
also agrees well with the experimental value for Shm-reported by
Miyauchi et al. [26], who  found a value of Shm = 15 for a sphere
packing with a slightly larger external porosity (ε = 0.47). The value
of Shm = 12 also agrees well with the value that would be obtained
when extrapolating the extensive data set compiled by Wakao et al.
[23] to the �i → 0-limit.

Comparing Fig. 4a with 4b allows assessing the effect of the
external porosity on the observed Shm-value. Again in agreement
with the theoretical calculations of Pfeffer and Happel [28], the Shm-
values decrease with increasing ε. This is mainly due to the fact
that the relevant characteristic length for the mass transfer is not
the particle diameter but the size of the through-pores between
the particles. Considering a fixed particle size (which is what one

does when comparing Shm-values that are calculated on the basis
of the particle diameter), the through-pores of the ε = 0.80-case are
considerably larger than in the low ε-cases. Combining this with
the obvious fact that narrower through-pores lead to a higher mass
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ransfer rate (because of the shorter distance that needs to be cov-
red), it is indeed obvious to find that the low ε-cases lead to larger
hm-values than the ε = 0.80-case. In fact, all existing correlations
nd literature expressions (including the Wilson and Geankoplis
orrelation) predict a similar qualitative dependency of a decreas-
ng Shm (or Shm,ln) with increasing ε.

To study the effect of the external porosity in more detail in
he region of external porosities typically encountered in a packed
ed of spheres, four different porosities ranging from 0.35 to 0.44
ere considered. The result is shown in Fig. 4a. As can be noted,

he influence of ε is rather small (maximum 10%) in this porosity
ange. Because of this small difference, the Shm-data for the differ-
nt external porosities in Fig. 4a can all be very closely represented
y Eqs. (10a), (10b) and (11).

A similar dependency on the external porosity as observed in
ig. 4 for the sphere array is observed for the 3D Tetrahedral skele-
on model (TSM), where the ε = 0.38-case also leads to considerably
arger Shm-values than the ε = 0.60-case (Fig. 5a and b).

Similarly to what was already apparent for the ε = 0.38-sphere
rray, the data for the ε = 0.38-TSM do not monotonically decrease
hen going from large to low �i-values (see Fig. 5a). Instead, the

hm-values go through a minimum around �i = 20 and slightly
ncrease with a further decrease of �i until a constant value is
eached in the �i → 0-limit. It is believed this type of increase is
f the same nature as the increase of the Shm-values observed for
ecreasing �i-values in the cylindrical tube (see Fig. 3). Whereas
he ε = 0.60-data can still be represented by an expression of the
ype of Eq. (5),  the ε = 0.38-data can only be fitted with an adapted
xpression of the same type as Eq. (11), allowing to account for
he fact that Shm decreases with increasing �i in the small �i-range.
his, respectively, yields:

hm = 8.0
1 + 0.13vi

+ 3.5v0.23
i (ε = 0.38) 0.5 < vi < 1000 (12a)

hm = 4.5 + 0.20v0.56
i (ε = 0.60) 0.5 < vi < 250 (12b)

Similar to the 3D sphere array case considered in Fig. 4, the
ilson–Geankoplis expression is again far off, as are all other pos-

ible correlations (Kataoka-model, penetration model) of the type
iven by Eq. (4) (data not represented).

The increase of Shm with decreasing �i in the range of small �i

hich was already visible in the cylindrical tube case (Fig. 3) and

n the sphere array and the TSM with ε = 0.38 (Figs. 4a and 5a)  is
ven more pronounced in the 2D cylinder array (Fig. 6), where the
downward) slope of the Shm-curve in the small �i-range is nearly
in Fig. 7a using (a) the presently computed Shm-values and (b) Shm-values calculated
using the Wilson–Geankoplis expression.

as steep as the (upward) slope in the large �i-range. The Shm-value
in the �i → 0-limit is for the 2D pillar array case also significantly
larger than in the case of the two  considered 3D geometries (sphere
array and TSM).

The best-fit equation is now given by:

Shm = 20
1 + 0.19vi

+ 7.6v0.18
i (ε = 0.40) 2 < vi < 300 (13)

4.3. Use of calculated Shm-values for the prediction of the band
broadening in chromatography

With the Shm-values calculated in an independent and correct
(i.e., based on the local driving force) manner, it should be possible
to apply Eq. (1) to predict the band broadening in chromatographic
systems in a more accurate way  than is possible when using the tra-
ditionally employed expressions of the form of Eq. (4),  such as the
Wilson and Geankoplis expression. To investigate this, the ability
to use Eq. (1) in combination with the newly calculated Shm-data
to model the highly accurate (numerically computed) plate height
value sets for 2D pillar arrays and the TSM, respectively, presented
by De Wilde et al. [19] and Detobel et al. [18], has been investigated.

Prior to this, the hinhom-term appearing in Eq. (1) was first writ-
ten in more explicit terms, using the Giddings-coupling theory [11].
Since only perfectly ordered systems are considered in the present
study, only one Giddings-coupling term should be sufficient (short-
or long-range coupling distances are not present in ordered sys-
tems), so that:
hinhom = Avi

1 + Dvi
(14)
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used most often in liquid chromatography, but which is based on
n  Fig. 7b using (a) the presently computed Shm-values and (b) Shm-values calculated
sing the Wilson–Geankoplis expression.

sing the Shm-data calculated in the present study, the only
nknown coefficients in the set of expressions defined by Eqs. (1)
nd (14) are the A- and D-values needed in Eq. (14). This reduces
he fitting problem from a 4-parameter fitting problem in [18,19]
o only a 2-parameter fitting problem in the present study. This

akes the fitting test considerably more demanding than the ones
n [18,19],  as there are now less fitting parameters that can absorb
ome of the modeling errors.

As can be noted from the excellent agreement between the plate
eight data and the best-fit curves in Figs. 7 and 8, the ability to
odel such a complex dependency on �i, k′′ and Dpart using only

wo fitting parameters (A and D, which are furthermore kept the
ame for every different case of Dpart and k′′) is striking. This holds
or both the TSM-structures (Fig. 7) and the 2D pillar array data
Fig. 8).

Using the same approach, but now with the Wilson–Geankoplis
xpression to calculate Shm, the fitting quality is clearly less good,
s can be noted from the relative residual plots given in Figs. 9–11
compare panel (a) with panel (b) in each figure). All in all, the
verage relative residual fitting error reduces from resp. 3.5% (TSM
ith ε = 0.38), 6.9% (TSM with ε = 0.60) and 19% (2D pillar array)
hen using the Wilson–Geankoplis expression to resp. 1.2% (sphere

rray), 1.6% (TSM) and 1.0% (2D pillar array) when using the Shm-
alues computed in the present study.

Given the relative fitting errors are still reasonable, one could
rgue that the Wilson–Geankoplis-based plate height predictions
re still relatively good (especially for the TSM-cases). It should,

owever, be considered that this relative good fit is obtained
ecause the hinhom-term partly make up for the errors induced by
he Wilson–Geankoplis by distorting the best-fit A- and D-values.
Fig. 11. Relative residual plots for the fitting quality of the 2D pillar array data shown
in Fig. 8 using (a) the presently computed Shm-values and (b) Shm-values calculated
using the Wilson–Geankoplis expression.

This, however, also implies that the use of a wrong Shm-correlation
is bound to lead to errors on the observed eddy-dispersion.

5. Conclusions

The expressions for the mobile zone mass transfer coefficient
(or its dimensionless variant, the Sherwood-number) that have up
to now been traditionally used in the field of chromatography, such
as the popular correlations of Wilson and Geankoplis [13], Kataoka
et al. [39], are based on a measurement method neglecting the effect
of the axial dispersion. As a consequence, these equations predict
that the mass transfer term tends to zero when the velocity tends
to zero (Shm → 0 when �i → 0).

This behaviour deviates from the behaviour of the true mass
transfer coefficient that should be used in the general plate height
expression. The coefficient appearing there should be based on the
local driving force (using the true local concentration) and not on
the driving force estimated from the inlet and outlet concentrations
only. In agreement with theory [22,28] and earlier experiments
[21,22,26,27], this leads to much larger values of Shm. Depending on
the considered geometry (spheres versus cylindrical pillars versus
tetrahedral skeleton but all with an external porosity of the order
of 40%), Shm is of the order of Shm = 10 to 20 in the range of reduced
velocities below �i = 50, hence including the range typically cov-
ered in liquid chromatography. These values are roughly some 2–5
times larger than those predicted by the Wilson and Geankoplis-
correlation, which has up to now been the Shm-correlation that is
a wrongly defined driving force and which has been obtained in a
range of reduced velocities (� > 40) that is too large for the field of
liquid chromatography. The data represented in [21,22,26–28] are
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ased on the correct driving force, and are in full agreement with
he data set obtained in the presently proposed numerical study.

Conducting an extensive series of computational fluid dynam-
cs simulations and retrieving the Shm-data directly from the local
alue of the mass transfer flux (instead of using the traditional
ethod based on Eq. (7),  which underestimates the true mass

ransfer flux due to the neglect of axial dispersion), a set of new
orrelations describing the variation of the Shm-coefficient as a
unction of the reduced velocity has been established for the differ-
nt considered geometries. These expressions show that the use of
he Wilson–Geankoplis correlation, as well as the Kataoka- and the
enetration-model in the field of liquid chromatography may  need
o be reconsidered. Future research efforts are needed to expand
he correlations to more close representations of random sphere
ackings and provide the experimental validation for them.
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